Tridiagonal systems of linear equations Consider the

Chapter 28, Problem 28-1

(choose chapter or problem)

Tridiagonal systems of linear equations Consider the tridiagonal matrix A D 1 1000 1 2 100 0 1 2 1 0 0 0 1 2 1 000 1 2 : a. Find an LU decomposition of A. b. Solve the equation Ax D 11111 T by using forward and back substitution. c. Find the inverse of A. d. Show how, for any n n symmetric positive-definite, tridiagonal matrix A and any n-vector b, to solve the equation Ax D b in O.n/ time by performing an LU decomposition. Argue that any method based on forming A1 is asymptotically more expensive in the worst case. e. Show how, for any n n nonsingular, tridiagonal matrix A and any n-vector b, to solve the equation Ax D b in O.n/ time by performing an LUP decomposition.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back