Finding a Derivative In Exercises 53–78, find the derivative of the function.
\(y=\frac{1}{b^{2}}\left[\ln (a+b x)+\frac{a}{a+b x}\right]\)
Text Transcription:
y=1/b^2[ln(a+bx)+a/a+bx]
Step 1 of 5) We use polar coordinates and parametrize S by noting that above the point (r, u) in the plane, the z–coordinate of S is y2 - x2 = r2 sin2 u - r2 cos2 u. A parametrization of S is r(r, u) = (r cos u)i + (r sin u)j + r2(sin2 u - cos2 u)k, 0 … r … 1, 0 … u … 2p. We next compute * F # n ds.