×
Log in to StudySoup
Get Full Access to Physics: Principles With Applications - 6 Edition - Chapter 10 - Problem 15pe
Join StudySoup for FREE
Get Full Access to Physics: Principles With Applications - 6 Edition - Chapter 10 - Problem 15pe

Already have an account? Login here
×
Reset your password

Consider the 12.0 kg motorcycle wheel shown in Figure

Physics: Principles with Applications | 6th Edition | ISBN: 9780130606204 | Authors: Douglas C. Giancoli ISBN: 9780130606204 3

Solution for problem 15PE Chapter 10

Physics: Principles with Applications | 6th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Physics: Principles with Applications | 6th Edition | ISBN: 9780130606204 | Authors: Douglas C. Giancoli

Physics: Principles with Applications | 6th Edition

4 5 1 338 Reviews
10
1
Problem 15PE

Consider the 12.0 kg motorcycle wheel shown in Figure 10.38. Assume it to be approximately an annular ring with an inner radius of 0.280 m and an outer radius of 0.330 m. The motorcycle is on its center stand, so that the wheel can spin freely. (a) If the drive chain exerts a force of 2200 N at a radius of 5.00 cm, what is the angular acceleration of the wheel? (b) What is the tangential acceleration of a point on the outer edge of the tire? (c) How long, starting from rest, does it take to reach an angular velocity of 80.0 rad/s?

Step-by-Step Solution:

Step-by-step solution Step 1 of 3 Refer to the figure 10.38 provided in the textbook. First Calculate the torque and moment of inertia of wheel after that calculate angular acceleration. (a) Drive chain exerts a force on a radius, and then the torque generated is, Here, is the torque generated, is the force exerted, and is the radius. Substitute, and Suppose wheel as an annular ring, so the moment of inertia is calculated according to outer and inner radius of the wheel, From the moment of inertia of an annular ring is, Here is the moment of inertia of the ring is the mass of the wheel and is the inner radius and is the outer radius of the wheel. Substitute, and From the relation of torque moment of inertia and angular acceleration, calculate angular acceleration. Here is the angular acceleration of the wheel, Substitute, and in the above equation to get, Hence, angular acceleration of the wheel is .

Step 2 of 3

Chapter 10, Problem 15PE is Solved
Step 3 of 3

Textbook: Physics: Principles with Applications
Edition: 6
Author: Douglas C. Giancoli
ISBN: 9780130606204

This full solution covers the following key subjects: wheel, radius, motorcycle, acceleration, angular. This expansive textbook survival guide covers 35 chapters, and 3914 solutions. The full step-by-step solution to problem: 15PE from chapter: 10 was answered by , our top Physics solution expert on 03/03/17, 03:53PM. The answer to “Consider the 12.0 kg motorcycle wheel shown in Figure 10.38. Assume it to be approximately an annular ring with an inner radius of 0.280 m and an outer radius of 0.330 m. The motorcycle is on its center stand, so that the wheel can spin freely. (a) If the drive chain exerts a force of 2200 N at a radius of 5.00 cm, what is the angular acceleration of the wheel? (b) What is the tangential acceleration of a point on the outer edge of the tire? (c) How long, starting from rest, does it take to reach an angular velocity of 80.0 rad/s?” is broken down into a number of easy to follow steps, and 104 words. Since the solution to 15PE from 10 chapter was answered, more than 425 students have viewed the full step-by-step answer. This textbook survival guide was created for the textbook: Physics: Principles with Applications, edition: 6. Physics: Principles with Applications was written by and is associated to the ISBN: 9780130606204.

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

Consider the 12.0 kg motorcycle wheel shown in Figure