The exponential atmosphere.(a) Consider a horizontal slab

Chapter 1, Problem 16P

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Problem 16P

The exponential atmosphere.

(a) Consider a horizontal slab of air whose thickness (height) is dz. If this slab is at rest, the pressure holding it up from below must balance both the pressure from above and the weight of the slab. Use this fact to find an expression for dP/dz, the variation of pressure with altitude, in terms of the density of air.

(b) Use the ideal gas law to write the density of air in terms of pressure, temperature, and the average mass m of the air molecules. (The information needed to calculate m is given in Problem.) Show, then, that the pressure obeys the differential equation

called the barometric equation.

(c) Assuming that the temperature of the atmosphere is independent of height (not a great assumption but not terrible either), solve the barometric equation to obtain the pressure as a function of height: P(z) = P(0)e−mgz/kT. Show also that the density obeys a similar equation.

(d) Estimate the pressure, in atmospheres, at the following locations: Ogden, Utah (4700 ft or 1430 m above sea level); Leadville, Colorado (10,150 ft, 3090 m) ; Mt. Whitney, California (14,500 ft, 4420 m); Mt. Everest, Nepal/Tibet (29,000 ft, 8850 m). (Assume that the pressure at sea level is 1 atm.)

Problem: Calculate the mass of a mole of dry air, which is a mixture of N2 (78% by volume), O2 (21%), and argon (1%).

Questions & Answers

QUESTION:

Problem 16P

The exponential atmosphere.

(a) Consider a horizontal slab of air whose thickness (height) is dz. If this slab is at rest, the pressure holding it up from below must balance both the pressure from above and the weight of the slab. Use this fact to find an expression for dP/dz, the variation of pressure with altitude, in terms of the density of air.

(b) Use the ideal gas law to write the density of air in terms of pressure, temperature, and the average mass m of the air molecules. (The information needed to calculate m is given in Problem.) Show, then, that the pressure obeys the differential equation

called the barometric equation.

(c) Assuming that the temperature of the atmosphere is independent of height (not a great assumption but not terrible either), solve the barometric equation to obtain the pressure as a function of height: P(z) = P(0)e−mgz/kT. Show also that the density obeys a similar equation.

(d) Estimate the pressure, in atmospheres, at the following locations: Ogden, Utah (4700 ft or 1430 m above sea level); Leadville, Colorado (10,150 ft, 3090 m) ; Mt. Whitney, California (14,500 ft, 4420 m); Mt. Everest, Nepal/Tibet (29,000 ft, 8850 m). (Assume that the pressure at sea level is 1 atm.)

Problem: Calculate the mass of a mole of dry air, which is a mixture of N2 (78% by volume), O2 (21%), and argon (1%).

ANSWER:

ANSWER:

a)

The basic formula for the vertical pressure variation is,

          --------------(1)

Where is the change in height.

In our question, the height is dZ.

So, ----------------(2)

Where is th

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back