This problem gives an alternative approach to estimating

Chapter 2, Problem 22P

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Problem 22P

This problem gives an alternative approach to estimating the width of the peak of the multiplicity function for a system of two large Einstein solids.

a) Consider two identical Einstein solids, each with N oscillators, in thermal contact with each other. Suppose that the total number of energy units in the combined system is exactly 2N. How many different macrostates (that is, possible values for the total energy in the first solid) are there for this combined system?

b) Use the result of below Problem to find an approximate expression, for the total number of microstates for the combined system. (Hint: Treat the combined system as a single Einstein solid. Do not throw away factors of “large” numbers, since you will eventually be dividing two “very large” numbers that are nearly equal.

c) The most likely macrostate for this system is (of course) the one in which the energy is shared equally between the two solids. Use the result of below Problem to find an approximate expression for the multiplicity of this macrostate.

d) You can get a rough idea of the “sharpness” of the multiplicity function by comparing your answers to parts (b) and (c). Part (c) tells you the Height of the peak, while part (b) tells yon the total area under the entire graph. As a very crude approximation, pretend that the peak’s shape is rectangular. In this case, how wide would it be? Out of all the macrostates, what fraction have reasonably large probabilities? Evaluate this fraction numerically for the case N = 1023.

Problem:

Use Stirling’s approximation to show that the multiplicity of an Einstein solid, for any large values of N and q, is approximately

The square root in the denominator is merely large, and can often be neglected. However, it is needed in above Problem. (Hint: First show that Do not neglect the  in Stirling’s approximation.)

Questions & Answers

QUESTION:

Problem 22P

This problem gives an alternative approach to estimating the width of the peak of the multiplicity function for a system of two large Einstein solids.

a) Consider two identical Einstein solids, each with N oscillators, in thermal contact with each other. Suppose that the total number of energy units in the combined system is exactly 2N. How many different macrostates (that is, possible values for the total energy in the first solid) are there for this combined system?

b) Use the result of below Problem to find an approximate expression, for the total number of microstates for the combined system. (Hint: Treat the combined system as a single Einstein solid. Do not throw away factors of “large” numbers, since you will eventually be dividing two “very large” numbers that are nearly equal.

c) The most likely macrostate for this system is (of course) the one in which the energy is shared equally between the two solids. Use the result of below Problem to find an approximate expression for the multiplicity of this macrostate.

d) You can get a rough idea of the “sharpness” of the multiplicity function by comparing your answers to parts (b) and (c). Part (c) tells you the Height of the peak, while part (b) tells yon the total area under the entire graph. As a very crude approximation, pretend that the peak’s shape is rectangular. In this case, how wide would it be? Out of all the macrostates, what fraction have reasonably large probabilities? Evaluate this fraction numerically for the case N = 1023.

Problem:

Use Stirling’s approximation to show that the multiplicity of an Einstein solid, for any large values of N and q, is approximately

The square root in the denominator is merely large, and can often be neglected. However, it is needed in above Problem. (Hint: First show that Do not neglect the  in Stirling’s approximation.)

ANSWER:

Solution 22P

Step 1

(a)

We need to find the total number of macrostates for combined system of two solids.

If two einstein solids are combined with q=2N, the total number of macrostates in combined system is given by,

Total number of macrostates=q+1=2N+1, since N is very large, we can approximate the number of macrostates to 2N.

(b)

In this part we need to find an approximate expression for the total number of microstates in the combined system. For that we need to solve the problem given at the end.


The multiplicity function of an einstein solid with large number of oscillators and energy units is given by,

Since N is very large,

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back