If \(Z\) is \(N(0,1)\), find
(a) \(P(0 \leq Z \leq 0.87)\).
(b) \(P(-2.64 \leq Z \leq 0)\).
(c) \(P(-2.13 \leq Z \leq-0.56)\).
(d) \(P(|Z|>1.39)\).
(e) \(P(Z<-1.62)\).
(f) \(P(|Z|>1)\).
(g) \(P(|Z|>2)\).
(h) \(P(|Z|>3)\).
Equation Transcription:
.
.
.
.
.
.
.
Text Transcription:
Z
N(0,1)
P(0 < or = Z < or = 0.87)
P(−2.64 < or = Z < or = 0)
P(−2.13 < or = Z < or =−0.56)
P(|Z|>1.39) . P(Z<−1.62).
P(|Z|>1)
P(|Z|>2)
P(|Z|>3)
Solution :
Step 1 of 3:
If Z is the standard normal distribution N(0,1). We have to find the probabilities.
-
P(0<Z
0.87)
-
P(-2.64
Z<0)
-
P(
)
- P(|Z|>1.39)
- P(Z <-1.62)
- P(|Z|>1)
- P(|Z|>2)
- P((|Z|>3).