×
Log in to StudySoup
Get Full Access to Calculus: Early Transcendentals - 1 Edition - Chapter 10.2 - Problem 73e
Join StudySoup for FREE
Get Full Access to Calculus: Early Transcendentals - 1 Edition - Chapter 10.2 - Problem 73e

Already have an account? Login here
×
Reset your password

Equations of circles Use the results of | Ch 10.2 - 73E

Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett ISBN: 9780321570567 2

Solution for problem 73E Chapter 10.2

Calculus: Early Transcendentals | 1st Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Calculus: Early Transcendentals | 1st Edition | ISBN: 9780321570567 | Authors: William L. Briggs, Lyle Cochran, Bernard Gillett

Calculus: Early Transcendentals | 1st Edition

4 5 1 253 Reviews
30
0
Problem 73E

Equations of circles Use the results of Exercise to describe and graph the following circles.

r2 − 2r(−cos θ + 2 sin θ) = 4

Step-by-Step Solution:

Solution 73E

Step 1:

In this problem;

We have to describe and graph of the  circle

We know that the polar equation represents  a circle of radius ‘R’ centered at ( a, b).

Consider ,

                       

By , using the above result  represents a circle.

So , here  a =  -1, b = 2 , and  = 4

                                             = 4

                                            = 4

                                            = 4

                                           + 4 = 9

                                            = 3.

Therefore , represents a circle of radius ‘’ centered at ( -1, 2).

Step 2 of 3

Chapter 10.2, Problem 73E is Solved
Step 3 of 3

Textbook: Calculus: Early Transcendentals
Edition: 1
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
ISBN: 9780321570567

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

Equations of circles Use the results of | Ch 10.2 - 73E