The Clausius-Clapeyron below relation is a differential

Chapter 5, Problem 35P

(choose chapter or problem)

Problem 35P

The Clausius-Clapeyron below relation is a differential equation that can, in principle, be solved to find the shape of the entire phase-boundary curve. To solve it, however, you have to know how both L and ΔV depend on temperature and pressure. Often, over a reasonably small section of the curve, you can take L to be constant. Moreover, if one of the phases is a gas, you can usually neglect the volume of the condensed phase and just take ΔV to be the volume of the gas, expressed in terms of temperature and pressure using the ideal gas law. Making all these assumptions, solve the differential equation explicitly to obtain the following formula for the phase boundary curve:

P = (constant) × e–L/RT,

This result is called the vapour pressure equation. Caution: Be sure to use this formula only when all the assumptions just listed are valid.

Relation:

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back