In a real hemoglobin molecule, The tendency of oxygen to

Chapter 7, Problem 2P

(choose chapter or problem)

Problem 2P

In a real hemoglobin molecule, The tendency of oxygen to bind to a heme site increases as the other three heme sites become occupied. To model this effect in a simple way, imagine that a hemoglobin molecule has just two sites, either or both of which can be occupied. This system has four possible states (with only oxygen present). Take the energy of the unoccupied state to be zero, the energies of the two singly occupied states to be −0.55 eV, and the energy of the doubly occupied state to be −1.3 eV (so the change in energy upon binding the second oxygen is −0.75 eV). As in the previous problem, calculate and plot the fraction of occupied sites as a function of The effective partial pressure of oxygen. Compare to the graph from the previous problem (for independent sites) . Can you think of why this behavior is preferable for the function of hemoglobin?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back