In each of 1 through 12:(a) Draw a direction field for the given differential equation.(b) Based on an inspection of the direction field, describe how solutions behave for large t.(c) Find the general solution of the given differential equation, and use it to determine how solutions behave as t -> 8 2y+ y = 3t

r -2 ; o fk Lv "f '(nl'2n',3-z) (-e,il (',7) (V,J C ,l _tt + -=-* i I q>{ lG).+ r& rv.za.')4 4\ .\ jnlrr,ralto(etti L-o"- * z) F I ni rrv'at.6{-aret,{n) k, J') t r tC,S b in\c x UV\l) Q\ur\ r X fC a,ror\cp.r- \q\ Sr g."pu- (^7 +(o-- [u -Oa + t f->; Ut, A %C"-E1-b