?2E many of the following problems, it will be essential

Chapter 3, Problem 2E

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

In many of the following problems, it will be essential to have a calculator or computer available. You may use a software package or write a program for solving initial value problems using the improved Euler’s method algorithms on pages 127 and 128. (Remember, all trigonometric calculations are done in radians.)

IMPROVED EULER’S METHOD SUBROUTINE

Purpose           To approximate the solution \(\phi(x)\) to the initial value problem

                                \(y^{\prime}=f(x, y)\) ,     \(y\left(x_{0}\right)=y_{0}\) ,

                        for \(x_{0} \leq x \leq c\).

INPUT             \(x_0,\ y_0,\ c\ ,N\) (number of steps), PRNTR (=1 to print a table)

Step 1              Set step size \(h=\left(c-x_{0}\right) / N\), \(x=x_{0}\), \(x=x_{0}\)

Step 2              For \(i=1\) to N, do steps 3-5

Step 3                Set

                                          \(F=f(x,\ y)\)

                                          \(G=f(x+h,\ y+hF)\)

Step 4               Set

                                          \(x=x+h\)

                                          \(y=y+h(F+H)/2\)

Step 5              If PRNTR = 1, print \(x,y\)

IMPROVED EULER’S METHOD WITH TOLERANCE

Purpose           To approximate the solution to the initial value problem

                                \(y^{\prime}=f(x, y)\) ,     \(y\left(x_{0}\right)=y_{0}\) ,

                        at \(x=c\), with tolerance \(\varepsilon\)

INPUT             \(x_0,\ y_0,\ c\ ,\varepsilon\) ,

                        M (maximum number of halvings of step size)

Step 1              Set \(z=y_0\), PRINTR = 0

Step 2              For \(m=0\) to M, do steps 3-7††

Step 3                 Set \(N=2^m\)

Step 4                 Call IMPROVED EULER’S METHOD SUBROUTINE

Step 5                 Print \(h,y\)

Step 6                 If \(|y-z|<\varepsilon\), go to Step 10

Step 7                 Set \(z=y\)

Step 8         Print “\(\phi (c)\) is approximately”; y; “ but may not be within the tolerance”; \(\varepsilon\)

Step 9             Go to Step 11

Step 10           Print “\(\phi (c)\) is approximately”; y; “with tolerance”; \(\varepsilon\)

Step 11           STOP

OUTPUT        Approximations of the solution to the initial value problem at \(x=c\) using \(2^m) steps

Show that when Euler’s method is used to approximate the solution of the initial value problem

\(y^{\prime}=-\frac{1}{2} y\),                       \(y(0)=3\),

at \(x=2\), then the approximation with step size 𝘩 is

\(3\left(1-\frac{h}{2}\right)^{2 / h}\).

Equation Transcription:

𝜙

 

𝜙

𝜙

Text Transcription:

phi(x)

y'=f(x,y) , y(x0=y0)

X_0 </= x </= c

x0,y0

h=(c-x_0)/N,x_0,y=y_0

i=1

F=f(x,y)

G=f(x+h,y+Hf)

x=x+h

y=y+h(F+G)/2

y'=(x,y), y(x_0)=y_0

x=c

epsilon

x_0,y_0

epsilon

z=y_0

m=0

N=2^m

|y-z|<epsilon

z=y

phi(c)

epsilon

phi(c)

epsilon

x=c

2^m

y’=-12y

y(0)=3

x=2

3(1- h over 2)^2/h

Questions & Answers

QUESTION:

In many of the following problems, it will be essential to have a calculator or computer available. You may use a software package or write a program for solving initial value problems using the improved Euler’s method algorithms on pages 127 and 128. (Remember, all trigonometric calculations are done in radians.)

IMPROVED EULER’S METHOD SUBROUTINE

Purpose           To approximate the solution \(\phi(x)\) to the initial value problem

                                \(y^{\prime}=f(x, y)\) ,     \(y\left(x_{0}\right)=y_{0}\) ,

                        for \(x_{0} \leq x \leq c\).

INPUT             \(x_0,\ y_0,\ c\ ,N\) (number of steps), PRNTR (=1 to print a table)

Step 1              Set step size \(h=\left(c-x_{0}\right) / N\), \(x=x_{0}\), \(x=x_{0}\)

Step 2              For \(i=1\) to N, do steps 3-5

Step 3                Set

                                          \(F=f(x,\ y)\)

                                          \(G=f(x+h,\ y+hF)\)

Step 4               Set

                                          \(x=x+h\)

                                          \(y=y+h(F+H)/2\)

Step 5              If PRNTR = 1, print \(x,y\)

IMPROVED EULER’S METHOD WITH TOLERANCE

Purpose           To approximate the solution to the initial value problem

                                \(y^{\prime}=f(x, y)\) ,     \(y\left(x_{0}\right)=y_{0}\) ,

                        at \(x=c\), with tolerance \(\varepsilon\)

INPUT             \(x_0,\ y_0,\ c\ ,\varepsilon\) ,

                        M (maximum number of halvings of step size)

Step 1              Set \(z=y_0\), PRINTR = 0

Step 2              For \(m=0\) to M, do steps 3-7††

Step 3                 Set \(N=2^m\)

Step 4                 Call IMPROVED EULER’S METHOD SUBROUTINE

Step 5                 Print \(h,y\)

Step 6                 If \(|y-z|<\varepsilon\), go to Step 10

Step 7                 Set \(z=y\)

Step 8         Print “\(\phi (c)\) is approximately”; y; “ but may not be within the tolerance”; \(\varepsilon\)

Step 9             Go to Step 11

Step 10           Print “\(\phi (c)\) is approximately”; y; “with tolerance”; \(\varepsilon\)

Step 11           STOP

OUTPUT        Approximations of the solution to the initial value problem at \(x=c\) using \(2^m) steps

Show that when Euler’s method is used to approximate the solution of the initial value problem

\(y^{\prime}=-\frac{1}{2} y\),                       \(y(0)=3\),

at \(x=2\), then the approximation with step size 𝘩 is

\(3\left(1-\frac{h}{2}\right)^{2 / h}\).

Equation Transcription:

𝜙

 

𝜙

𝜙

Text Transcription:

phi(x)

y'=f(x,y) , y(x0=y0)

X_0 </= x </= c

x0,y0

h=(c-x_0)/N,x_0,y=y_0

i=1

F=f(x,y)

G=f(x+h,y+Hf)

x=x+h

y=y+h(F+G)/2

y'=(x,y), y(x_0)=y_0

x=c

epsilon

x_0,y_0

epsilon

z=y_0

m=0

N=2^m

|y-z|<epsilon

z=y

phi(c)

epsilon

phi(c)

epsilon

x=c

2^m

y’=-12y

y(0)=3

x=2

3(1- h over 2)^2/h

ANSWER:

Step 1:

In this problem, we have to show that the solution of Euler’s method is

at x = 2.

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back