An electron is trapped in an octahedral hole in a closest

Chapter 16, Problem 16.151

(choose chapter or problem)

An electron is trapped in an octahedral hole in a closest packed array of aluminum atoms (assume they behave as uniform hard spheres). In this situation, the energy of the electron is quantized and the lowest-energy transition corresponds to a wavelength of 9.50 nm. Assuming that the hole can be approximated as a cube, what is the radius of a sphere that will just fit in the octahedral hole? Reference Exercise 164 in Chapter 12 for the energy equation for a particle in a cube

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back