A particle of mass m and charge q is attached to a spring

Chapter 11, Problem 22P

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Problem 22P

A particle of mass m and charge q is attached to a spring with force constant k, hanging from the ceiling (Fig. 11.18). Its equilibrium position is a distance h above the floor. It is pulled down a distance d below equilibrium and released, at time t = 0.

(a) Under the usual assumptions (d ≪ λ ≪ h), calculate the intensity of the radiation hitting the floor, as a function of the distance R from the point directly below q. [Note: The intensity here is the average power per unit area of floor.]

At what R is the radiation most intense? Neglect the radiative damping of the oscillator.

(b) As a check on your formula, assume the floor is of infinite extent, and calculate the average energy per unit time striking the entire floor. Is it what you’d expect?

(c) Because it is losing energy in the form of radiation, the amplitude of the oscillation will gradually decrease. After what time τ has the amplitude been reduced to d/e? (Assume the fraction of the total energy lost in one cycle is very small.)

Questions & Answers

QUESTION:

Problem 22P

A particle of mass m and charge q is attached to a spring with force constant k, hanging from the ceiling (Fig. 11.18). Its equilibrium position is a distance h above the floor. It is pulled down a distance d below equilibrium and released, at time t = 0.

(a) Under the usual assumptions (d ≪ λ ≪ h), calculate the intensity of the radiation hitting the floor, as a function of the distance R from the point directly below q. [Note: The intensity here is the average power per unit area of floor.]

At what R is the radiation most intense? Neglect the radiative damping of the oscillator.

(b) As a check on your formula, assume the floor is of infinite extent, and calculate the average energy per unit time striking the entire floor. Is it what you’d expect?

(c) Because it is losing energy in the form of radiation, the amplitude of the oscillation will gradually decrease. After what time τ has the amplitude been reduced to d/e? (Assume the fraction of the total energy lost in one cycle is very small.)

ANSWER:

Step 1 of 3

Part a

We are required to calculate the intensity of radiation of the charge.

Given that the intensity is nothing but the average power incident on unit area of the floor.

The Poynting vector is given as,

The incident power per unit area,

   

   …..(1)

From the figure,

Substitute in (1),

Now, dipole moment

This is the expression for intensity of the radiation.

To find the at which the radiation is the most intense, we need to differentiate with respect to  and equate the result to zero.

     

     

     

Equating to zero,

Therefore, the required value of is .

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back