Let Z be a standard normal random variable.

Chapter 4, Problem 199SE

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Let Z be a standard normal random variable.

a Show that the expected values of all odd integer powers of 𝑍 are 0. That is, if \(i=1\), 2, . . . ,

show that \(E\left(Z^{2 i-1}\right)=0\). [Hint: A function \(\mathrm{g}(\cdot)\) is an odd function if, for all \(y,\ g(-y)=-g(y)\). For any odd function \(g(y),\ \int_{-\infty}^{\infty}g(y)\ dy=0\), if the integral exists.]

b If \(i=1\), 2, . . . , show that

                                             \(E\left(Z^{2 i}\right)=\frac{2^{i} \Gamma\left(i+\frac{1}{2}\right)}{\sqrt{\pi}}.\)

[Hint: A function \(h(\cdot)\) is an even function if, for all \(y,\ h(-y)=h(y)\). For any even function \(h(y),\ \int_{-\infty}^{\infty}h(y)\ dy=2\int_0^{\infty}h(y)\ dy\) if the integrals exist. Use this fact, make the change of variable \(w=z^{2} / 2\), and use what you know about the gamma function.]

c Use the results in part (b) and in Exercises 4.81(b) and 4.194 to derive \(E\left(Z^2\right),\ E\left(Z^4\right),\ E\left(Z^6\right),\text{ and }E\left(Z^8\right)\).

d If \(i=1\), 2, . . . , show that

                                             \(E\left(Z^{2 i}\right)=\prod_{j=1}^{i}(2 j-1).\)

This implies that the ith even moment is the product of the first 𝑖 odd integers.

Equation Transcription:

Text Transcription:

i=1

E(Z^2i-1)=0

g(cdot)

y,g(-y)=-g(y)

g(y), integral -infinity to infinity g(y) dy=0

i=1

E(Z^2i)=2^i Gamma(i+1over 2)over sqrt pi.

h(cdot)

y,h(-y)=h(y)

h(y), integral -infinity to infinity h(y) dy=2 integral 0 to infinity h(y) dy

w=z^2/2

E(Z^2), E(Z^4), E(Z^6), and E(Z^8)

i=1

E(Z^2i)=product j=1 to i (2j-1).

Questions & Answers

QUESTION:

Let Z be a standard normal random variable.

a Show that the expected values of all odd integer powers of 𝑍 are 0. That is, if \(i=1\), 2, . . . ,

show that \(E\left(Z^{2 i-1}\right)=0\). [Hint: A function \(\mathrm{g}(\cdot)\) is an odd function if, for all \(y,\ g(-y)=-g(y)\). For any odd function \(g(y),\ \int_{-\infty}^{\infty}g(y)\ dy=0\), if the integral exists.]

b If \(i=1\), 2, . . . , show that

                                             \(E\left(Z^{2 i}\right)=\frac{2^{i} \Gamma\left(i+\frac{1}{2}\right)}{\sqrt{\pi}}.\)

[Hint: A function \(h(\cdot)\) is an even function if, for all \(y,\ h(-y)=h(y)\). For any even function \(h(y),\ \int_{-\infty}^{\infty}h(y)\ dy=2\int_0^{\infty}h(y)\ dy\) if the integrals exist. Use this fact, make the change of variable \(w=z^{2} / 2\), and use what you know about the gamma function.]

c Use the results in part (b) and in Exercises 4.81(b) and 4.194 to derive \(E\left(Z^2\right),\ E\left(Z^4\right),\ E\left(Z^6\right),\text{ and }E\left(Z^8\right)\).

d If \(i=1\), 2, . . . , show that

                                             \(E\left(Z^{2 i}\right)=\prod_{j=1}^{i}(2 j-1).\)

This implies that the ith even moment is the product of the first 𝑖 odd integers.

Equation Transcription:

Text Transcription:

i=1

E(Z^2i-1)=0

g(cdot)

y,g(-y)=-g(y)

g(y), integral -infinity to infinity g(y) dy=0

i=1

E(Z^2i)=2^i Gamma(i+1over 2)over sqrt pi.

h(cdot)

y,h(-y)=h(y)

h(y), integral -infinity to infinity h(y) dy=2 integral 0 to infinity h(y) dy

w=z^2/2

E(Z^2), E(Z^4), E(Z^6), and E(Z^8)

i=1

E(Z^2i)=product j=1 to i (2j-1).

ANSWER:

Answer:

Step 1 of 4:

(a)

Let  be a standard normal variable.

We need to show that expected values of all odd integer powers of  are

That is if  show that

A standard normally distributed random variable with parameters (0, 1), i.e.  has density therefore,

……(1)

Now,

We know for any odd function  we can write,

Let define function

Lets check the properties of odd function.

hence the  is an odd function.

Since the  is an odd function, we can say that  is also an odd function.

Hence from the property of odd function, we can write,

Hence proved.


Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back