In Exercise 5.13, the joint density function of Y1 and Y2

Chapter 5, Problem 31E

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

In Exercise 5.13, the joint density function of \(Y_{1}\) and \(Y_{2}\) is given by

\(f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{ll} 30 y_{1} y_{2}^{2}, & y_{1}-1 \leq y_{2} \leq 1-y_{1}, 0 \leq y_{1} \leq 1, \\ 0, & \text { elsewhere. } \end{array}\right.\)

a Show that the marginal density of \(Y_{1}\) is a beta density with \(\alpha=2\) and \(\beta=4\).

b Derive the marginal density of \(Y_{2}\).

c Derive the conditional density of \(Y_{2}\) given \(Y_{1}=y_{1}\).

d Find \(P\left(Y_{2}>0 \mid Y_{1}=.75\right)\).

Questions & Answers

QUESTION:

In Exercise 5.13, the joint density function of \(Y_{1}\) and \(Y_{2}\) is given by

\(f\left(y_{1}, y_{2}\right)=\left\{\begin{array}{ll} 30 y_{1} y_{2}^{2}, & y_{1}-1 \leq y_{2} \leq 1-y_{1}, 0 \leq y_{1} \leq 1, \\ 0, & \text { elsewhere. } \end{array}\right.\)

a Show that the marginal density of \(Y_{1}\) is a beta density with \(\alpha=2\) and \(\beta=4\).

b Derive the marginal density of \(Y_{2}\).

c Derive the conditional density of \(Y_{2}\) given \(Y_{1}=y_{1}\).

d Find \(P\left(Y_{2}>0 \mid Y_{1}=.75\right)\).

ANSWER:

Step 1 of 4

(a)

Given the Joint probability density function of \({Y_1}\;{\rm{and}}\;{Y_2}\) is,

\(f\left( {{y_1},{y_2}} \right) = \left\{ \begin{array}{l}30{y_1}y_2^2;{y_1} - 1 \le {y_2} \le 1 - {y_1},0 \le {y_1} \le 1\\0;{\rm{otherwise}}\end{array} \right)\).

Let \({Y_1}\;{\rm{and}}\;{Y_2}\) be jointly continuous random variables with joint density function \(f\left( {{y_1},{y_2}} \right)\). Then, the marginal density of \({Y_1}\;{\rm{and}}\;{Y_2}\), respectively, are given by,

\({f_{{Y_1}}}\left( {{y_1}} \right) = \int\limits_{{y_2}} {f\left( {{y_1},{y_2}} \right)d{y_2}} \)

\({f_{{Y_2}}}\left( {{y_2}} \right) = \int\limits_{{y_1}} {f\left( {{y_1},{y_2}} \right)d{y_1}} \)

Hence,

\({f_{{Y_1}}}\left( {{y_1}} \right) = \int_{{y_1} - 1}^{1 - {y_1}} {30{y_1}y_2^2d{y_2}} \)

\({f_{{Y_1}}}\left( {{y_1}} \right) = 30{y_1}\int_{{y_1} - 1}^{1 - {y_1}} {y_2^2d{y_2}} \)

\({f_{{Y_1}}}\left( {{y_1}} \right) = 20{y_1}{\left( {1 - {y_1}} \right)^3},0 \le {y_1} \le 1\)

By the definition,

\(D\left( {\alpha ,\beta } \right) = \frac{{\left| \!{\overline {\,  \alpha  \,}} \right. \left| \!{\overline {\,  \beta  \,}} \right. }}{{\left| \!{\overline {\,  {\alpha  + \beta } \,}} \right. }}\)

Now,

\(D\left( {2,4} \right) = \frac{{\left| \!{\overline {\,  2 \,}} \right. \left| \!{\overline {\,  4 \,}} \right. }}{{\left| \!{\overline {\,  {2 + 4} \,}} \right. }}\)

\(D\left( {2,4} \right) = \frac{{\left| \!{\overline {\,  2 \,}} \right. \left| \!{\overline {\,  4 \,}} \right. }}{{\left| \!{\overline {\,  6 \,}} \right. }}\)

\(D\left( {2,4} \right) = \frac{1}{{20}}\)

So,\(\frac{1}{{\beta \left( {2,4} \right)}}y_1^{2 - 1}{\left( {1 - {y_1}} \right)^{4 - 1}} = 20{y_1}{\left( {1 - {y_1}} \right)^3}\).  

Hence, the marginal density of \({Y_1}\) is a \(\beta \)-density with \(\alpha  = 2\), and \(\beta = 4\).

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back