It is sometimes relatively easy to establish consistency

Chapter 9, Problem 26E

(choose chapter or problem)

It is sometimes relatively easy to establish consistency or lack of consistency by appealing directly to Definition 9.2, evaluating \(P\left(\left|\widehat{\theta}_{n}-\theta\right| \leq \varepsilon\right)\)directly, and then showing that \(lim _{n \rightarrow \infty} P\left(\left|\hat{\theta}_{2}-\theta\right| \leq \varepsilon\right) = 1\). Let \(Y_{1}, Y_{2}, \ldots, Y_{n}\) denote a random sample of size \(n\) from a uniform distribution on the interval \((0, \theta)\). If \(Y_{(n)}=\max \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)\) we showed in Exercise 6.74 that the probability distribution function of \(Y_{(n)}\) is given by

                                                       \(F_{(n)}(y)=\left\{\begin{array}{cc}0, & y<0 \\(y / \theta)^{n}, & 0 \leq y \leq \theta, \\1, & y>\theta .]\end{array}\right.\)

a  For each \(n \geq 1\) and every \(\varepsilon>\theta\), it follows that \(P\left(\left|Y_{(n)}-\theta\right| \leq \varepsilon\right)=P\left(\theta-\varepsilon \leq Y_{(n)} \leq \theta+\varepsilon\right.\). If \(\varepsilon>\theta\), verify that \(P\left(\theta-\varepsilon \leq Y_{(n)} \leq \theta+\varepsilon\right)=1\) and that, for every positive \(\varepsilon>\theta\), we obtain  \(P\left(\theta-\varepsilon \leq Y_{(n)} \leq \theta+\varepsilon\right)=1-[(\theta-\varepsilon) / \theta]^{n}\)

b  Using the result from part (a), show that \(Y_{(n)}\) is a consistent estimator for \(\theta\) by showing that, for every \(\varepsilon>0, \lim _{n \rightarrow \infty} P\left(\left|Y_{(n)}-\theta\right| \leq \varepsilon\right)=1\).

Equation Transcription:

 = max  

 {

 

Text Transcription:

P(hat{theta}_{n} - theta| leq varepsilon)

lim _{n rightarrow infty} P(|hat{theta}_{2} -theta| leq varepsion) = 1

Y_{1}, Y_{2}, \ldots, Y_{n}

n

(0, theta)

Y_(n) = max (Y_1, Y_2, …., Y_n)

Y_n

F_{(n)}(y) = {\begin{array}{cl}0, & y<0 \\(y/theta)^{n}, & 0 leq y leq theta \\1, & y > theta.]

n geq 1

varepsilon > theta

P(|Y_{(n)} - theta| leq varepsilon) = P(theta - varepsilon leq Y_{(n)} leq theta + varepsilon.

varepsilon > theta

P(theta - varepsilon leq Y_{(n)} leq theta + varepsilon) = 1

varepsilon > theta

P(theta - varepsilon leq Y_{(n)} leq theta + varepsilon) = 1 -[(theta - varepsilon) / theta]^n

Y_n

theta

varepsilon > 0, lim _{n rightarrow infty} P(|Y_{(n)} - theta| leq varepsilon) = 1

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back