In Exercises 13 40, evaluate the expression. Assume x 0.a) (-2)7 b) -27

Chapter 3.6 Trigonometric derivation Trig derivative rules: sin (x) os (x) d dx =c cos(x) in xd dx = −s tan(x) ec (x)d dx =s 2 cot(x) sc (x)d dx = −c 2 sec(x) ec(x) tan(x)d dx =s csc(x) sc(x) cot(x)d dx = −c Questions from the Overlord (LAST PAGE ANSWERS) Derive 15.y= θ secθ 24. e cos(x) x x Chapter 3.7 Chain rule hain rule (x) (g(x)) Equation (f(g(x))) f(g(x)) g(x)C :f =f : ′= ′ × ′ Example sin x) ( 2 hain rule c g(x)=u for below Power rule u u sin x d dx 2 ⇒ 2 ⇒ 2 Trig derivative rule: sin x os x d dx ⇒ c Answer : (x) sin x os x f′ =2 ×c : Rule for e (x) ex d dx g(x) = eg(x)×g′ Questions for practice (answers at end) Find the derivative of: 1. (x) r =√3x2−x 2. (x) os x S =c 3 3. (x) ln( ) z = √x 4. q(x)=etan(x) Questions from the Overlord 4 3. an(x x) y=t 2+4