A furnace for processing semiconductor materials is formed

Chapter , Problem 1.57

(choose chapter or problem)

A furnace for processing semiconductor materials is formed by a silicon carbide chamber that is zone-heated on the top section and cooled on the lower section. With the elevator in the lowest position, a robot arm inserts the silicon wafer on the mounting pins. In a production operation, the wafer is rapidly moved toward the hot zone to achieve the temperature-time history required for the process recipe. In this position, the top and bottom surfaces of the wafer exchange radiation with the hot and cool zones, respectively, of the chamber. The zone temperatures are Th 1500 K and Tc 330 K, and the emissivity and thickness of the wafer are 0.65 and d 0.78 mm, respectively. With the ambient gas at T 700 K, convection coefficients at the upper and lower surfaces of the wafer are 8 and 4 W/m2 K, respectively. The silicon wafer has a density of 2700 kg/m3 and a specific heat of 875 J/kg K. (a) For an initial condition corresponding to a wafer temperature of Tw,i 300 K and the position of the wafer shown schematically, determine the corresponding time rate of change of the wafer temperature, (dTw/dt)i . (b) Determine the steady-state temperature reached by the wafer if it remains in this position. How significant is convection heat transfer for this situation? Sketch how you would expect the wafer temperature to vary as a function of vertical distance.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back