A steam pipe of 0.12-m outside diameter is insulated with a layer of calcium silicate. (a) If the insulation is 20 mm thick and its inner and outer surfaces are maintained at Ts,1 800 K and Ts,2 490 K, respectively, what is the heat loss per unit length (q) of the pipe? (b) We wish to explore the effect of insulation thickness on the heat loss q and outer surface temperature Ts,2, with the inner surface temperature fixed at Ts,1 800 K. The outer surface is exposed to an airflow (T 25 C) that maintains a convection coefficient of h 25 W/m2 K and to large surroundings for which Tsur T 25 C. The surface emissivity of calcium silicate is approximately 0.8. Compute and plot the temperature distribution in the insulation as a function of the dimensionless radial coordinate, (r r1)/(r2 r1), where r1 0.06 m and r2 is a variable (0.06 r2 0.20 m). Compute and plot the heat loss as a function of the insulation thickness for 0 (r2 r1) 0.14 m. 3
1. Mutual Exclusion Condition The resources involved are non-shareable. Explanation: At least one resource (thread) must be held in a non-shareable mode, that is, only one process at a time claims exclusive control of the resource. If another process requests that resource, the requesting process must be delayed until the resource has been released. 2. Hold and Wait Condition Requesting process hold already, resources while waiting for requested resources. Explanation: There must exist a process that is holding a resource already allocated to it while waiting for additional resource that are currently being held by other processes. 3. No-Preemptive Condition Resources already allocated to a process cannot be preempted. Explanation: Resources cannot be removed from the process