The accompanying data set consists of observations on shower-flow rate (L/min) for a sample of n 129 houses in Perth, Australia (An Application of Bayes Methodology to the Analysis of Diary Records in a Water Use Study, J. Amer. Stat. Assoc., 1987: 705711): 4.6 12.3 7.1 7.0 4.0 9.2 6.7 6.9 11.5 5.1 11.2 10.5 14.3 8.0 8.8 6.4 5.1 5.6 9.6 7.5 7.5 6.2 5.8 2.3 3.4 10.4 9.8 6.6 3.7 6.4 8.3 6.5 7.6 9.3 9.2 7.3 5.0 6.3 13.8 6.2 5.4 4.8 7.5 6.0 6.9 10.8 7.5 6.6 5.0 3.3 7.6 3.9 11.9 2.2 15.0 7.2 6.1 15.3 18.9 7.2 5.4 5.5 4.3 9.0 12.7 11.3 7.4 5.0 3.5 8.2 8.4 7.3 10.3 11.9 6.0 5.6 9.5 9.3 10.4 9.7 5.1 6.7 10.2 6.2 8.4 7.0 4.8 5.6 10.5 14.6 10.8 15.5 7.5 6.4 3.4 5.5 6.6 5.9 15.0 9.6 7.8 7.0 6.9 4.1 3.6 11.9 3.7 5.7 6.8 11.3 9.3 9.6 10.4 9.3 6.9 9.8 9.1 10.6 4.5 6.2 8.3 3.2 4.9 5.0 6.0 8.2 6.3 3.8 6.0 a. Construct a stem-and-leaf display of the data. b. What is a typical, or representative, flow rate? c. Does the display appear to be highly concentrated or spread out? d. Does the distribution of values appear to be reasonably symmetric? If not, how would you describe the departure from symmetry? e. Would you describe any observation as being far from the rest of the data (an outlier)?
Statistics: Ch. 1 Important Definitions • Statistics—Numerical description of data • Population—A set of all subjects or elements about which we are interested in making inferences • Frame—A list containing all members of a population o Very expensive to make, would just be names • Census—Data that’s gathered from the entire population o Things like average income, number of children et cetera • Parameters—Population parameters are facts abo