Solve each of the following equations.IOg27 X + log27 (x + 8) 2 3

9/14: Negating Quantified Statements: 1. Universal Statement – x ∈ D, P(x) a. Negation – ~ [ x ∈ D, P(x)] i. To prove the negation, an example must be provided 1. x ∈ D, ~P(x) 2. Existential Statement – x ∈ D, Q(x) a. Negation – ~[ x ∈ D, Q(x)] = x ∈ D, ~Q(x) 3. Universal Conditional - x ∈ D, P(x) → Q(x) 1. Negation – ~ [ x ∈ D, P(x) → Q(x)] = x ∈ D, ~[P(x) → Q(x)] = x ∈ D, P(x) ^ ~Q(x) 4. “Sister” Conditionals to x ∈ D, P(x) → Q(x) a. Converse – x ∈ D, Q(x) → P(x) b. Contrapositive – x ∈ D, ~Q(x) → ~P(x) c. Inverse – x ∈ D, ~P(x) → ~Q(x) d. These a