In 3336 use the concept that y c, x , is a constant function if and only if y 0 to determine whether the given differential equation possesses constant solutions. y 4y 6y 10

MATH 1220 Notes for Week #12 4 April 2016 ● Realize you can bound cos(nx) where n is a positive integer above and below by [1,− 1] ● Then this is bounded on [− R, R] when R = 1 cos(nx) ● Let fn(x) = n on [− R, R], R > 0; can you bound f (x) |nrom|above ● Let M ne the upper bound; since cos(nx) is bounded above by 1 , cos2nxshould be n 1 bounded above by M = n n2 ∞ ● Does ∑ 2 converge n=1n ● Took bad notes this day, but it was mostly just a setup for the other days’ notes; you should get enough i