×
Get Full Access to Probability And Statistics For Engineers And The Scientists - 9 Edition - Chapter 1 - Problem 1.2
Get Full Access to Probability And Statistics For Engineers And The Scientists - 9 Edition - Chapter 1 - Problem 1.2

×

# According to the journal Chemical Engineering, an

ISBN: 9780321629111 32

## Solution for problem 1.2 Chapter 1

Probability and Statistics for Engineers and the Scientists | 9th Edition

• Textbook Solutions
• 2901 Step-by-step solutions solved by professors and subject experts
• Get 24/7 help from StudySoup virtual teaching assistants

Probability and Statistics for Engineers and the Scientists | 9th Edition

4 5 1 392 Reviews
20
2
Problem 1.2

According to the journal Chemical Engineering, an important property of a ber is its water absorbency. A random sample of 20 pieces of cotton ber was taken and the absorbency on each piece was measured. The following are the absorbency values: 18.71 21.41 20.72 21.81 19.29 22.43 20.17 23.71 19.44 20.50 18.92 20.33 23.00 22.85 19.25 21.77 22.11 19.77 18.04 21.12 (a) Calculate the sample mean and median for the above sample values. (b) Compute the 10% trimmed mean. (c) Do a dot plot of the absorbency data. (d) Using only the values of the mean, median, and trimmed mean, do you have evidence of outliers in the data?

Step-by-Step Solution:
Step 1 of 3

4/4/16 EXAMAPRIL14 th Ø 4/12NickTreichishostingareviewsession@415pminFulmer125 Ø 4/12Finneganishostingareviewsessioninthepit@7 Ø 4/11@515theChemclubishostingareviewsession AXE • • n=thenumberofbondinggroupsonthecentralatom • m=thenumberoflonepairsonthecentralatom • ANYtypeofbond(single,double,triple)isonebondinggroup • n+m=thenumberofelectrongroupsonthecentralatom ElectronGeometry • Thenumberofelectrongroupsdeterminesthis • Thereareonly5,seetable10.1 • Determinestheidealbondangles-elementstryandarrangethemselvesasfar awayfromeachotheraspossiblebecausetheelectronsrepulsethemselves MolecularGeometry(shape)-electrongeometryandthenumberoflonepairs determinethemoleculargeometry • Themolecularshape,thebonpolarities,andtheformalchargedistribution determinethemolecularpolarity 4/6/16 BondAngles • ElectronGeometrydeterminestheidealbondangles(theyareapproximate) Linear:180degreeangles Triganolplanar:120degreeangles Tetrahedral:109.5degreeangles Trigonalbipyramidal:90,120degreeangles Octahedral:90degreeangles • Lonepairstakeupmorespacethanbondingpairs • Doublebondstakeupmorespacethanasinglebonds • ImportantNote:Whendealingwithresonancestructures,theamountof spacethe“rotating”doublen=bondtakesupisnegligiblebecauseitis technicallyalldoublebonds ▯ • ElectronGeometry:TriganolBipyramidal • ℎ:Linearduetothe180degreeangle HowdowedothebondanglesforthismoleculeByusingtheideathatdouble bondstakeupmorespacethanasingle,andlonepairstakemorespacethanbonds • OctahedralElectronGeometry: ▯ ▯ • Molecularshape:squareplanar,duetothe90degreeangle • BondanglesforF-Xe-Fis90degrees • ElectronGeometry:Tetrahedral • MolecularShape:Triganolpyramidal • BondAnglesforH-N-Hislessthan109.5becausethelonepairwillmakethe anglesmallerthanthatofanormaltetrahedralmolecule NoticehowitisTetrahedralwiththelonepair,fortheshapethelonepairisnot drawn PolarandNon-PolarMolecules • Somethingispolarifithasanegativesideandanonpolarside • Inmoleculesthisisdeterminedbysymmetryaroundthecentralatom • If a molecule is symmetric (by polar bonds)around the central atom, the charges cancel eachother out • If the molecule is not semetric(by polar bonds) than the molecule is polar • A numeric measure of polarity is the Dipole moment(μ) • The more polar a molecule the larger the dipole moment • Is ▯ polar or non-polar Non-polar • Is ▯polar or non polar Non polar • Is ▯olar or non polar Polar • Look at the bonds and the way the bonds are arranged to see if they are polar or not! ValenceBondTheory • Acovalentbondisproducedbytheoverlapoforbitalsintheregion betweenthetwoatoms • Thegreatertheoverlap,thestrongerthebond. • But,theatomicorbitalsdonotalwayspointintherightdirectionsto producetheshapesthatthemoleculesaresupposedtohave Toexplainthis,itisassumedthattheatomicorbitalsaremixedtoproduce‘hybrid’ orbitalsthatpointinthecorrectdirection. • Hybridorbitalsarenamedfortheorbitalsthatcontributetothem.For Example isacombinationofonesorbitalandtwoporbitals • ImportantNote:Allorbitalsthataremixedmustcomefromthesame shell.ForExample3pand3scanbehybrids,but2pand4scannotbe combinedtogether. • The▯totalnumberoforbitalsisunchanged(Therewillbe2orbitals,three orbitalsandsoon) EachhybridhasitsownGeometryassociatedwithit,asshownbelow NoticehowforthegroundstateofCarbonthe2sorbitalisfull,butthe2porbitalis not▯evenhalffull,thismakescarbonunstablesothetwoorbitalscombinetoform ,makingcarbonstable • Singlebondsareformedbyoverlappingorbitalsinbetweenthe atoms.Thesebondsarecalledsigma(σ)bonds. • Doubleandtriplebondsalsocontainaσ-bondbutthesecond(andthird bond)cannotformdirectlybetweentheatoms(becausethereisalreadya pairofelectronsthere) • Theadditionalbondsareformedbyunhybridizedp-orbitalsthat overlapintheareastoeithersideofthesigmabond.Thesebondsare calledpi(π)bonds. • Adoublebondconsistsofaσ-bondandaπ-bond. • Atriplebondconsistsofaσ-bondandtwoπ-bonds. ThisDiagramshouldhelpyouvisualizetheprincipalofsigmaandpibonds

Step 2 of 3

Step 3 of 3

#### Related chapters

Unlock Textbook Solution