Measurements of scientic systems are always subject to

Chapter 4, Problem 3.30

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Measurements of scientic systems are always subject to variation, some more than others. There are many structures for measurement error, and statisticians spend a great deal of time modeling these errors. Suppose the measurement error X of a certain physical quantity is decided by the density function f(x)=k(3x2), 1 x 1, 0, elsewhere. (a) Determine k that renders f(x) a valid density function. (b) Find the probability that a random error in measurement is less than 1/2. (c) For this particular measurement, it is undesirable if the magnitude of the error (i.e., |x|) exceeds 0.8. What is the probability that this occurs?

Questions & Answers

QUESTION:

Measurements of scientic systems are always subject to variation, some more than others. There are many structures for measurement error, and statisticians spend a great deal of time modeling these errors. Suppose the measurement error X of a certain physical quantity is decided by the density function f(x)=k(3x2), 1 x 1, 0, elsewhere. (a) Determine k that renders f(x) a valid density function. (b) Find the probability that a random error in measurement is less than 1/2. (c) For this particular measurement, it is undesirable if the magnitude of the error (i.e., |x|) exceeds 0.8. What is the probability that this occurs?

ANSWER:

Step 1 of 4

The density function is given as

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back