Acceptable/Defective Products A new integrated circuit board is being developed for use in computers. In the early stages of development, a lack of quality control results in a 0.2 probability that a manufactured integrated circuit board has no defects. Engineers need 24 integrated circuit boards for further testing. What is the minimum number of integrated circuit boards that must be manufactured in order to be at least 98% sure that there are at least 24 that have no defects?

Answer:

Step 1 of 1</p>

There is p = 0.2 probability that a manufactured integrated circuit board has no defects. We need to find the minimum number of integrated circuit boards ‘n’ that must be manufactured in order to be at least 98% sure that there are at least 24 that have no defects. That is P(X 24) = 0.98

P(X 24) = 1 - P(X < 24)

= 1 - [P(0) + P(1) + . . . + P(23)]

Here P(0), P(1), . . . , P(23)...