Solution Found!

A 1.40-kg block slides with a speed of 0.950 m/s on a

Chapter 8, Problem 32P

(choose chapter or problem)

Get Unlimited Answers
QUESTION:

Problem 32P

A 1.40-kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 734 N/m. The block comes to rest after compressing the spring 4.15 cm. Find the spring potential energy, u, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of (a) 0 cm, (b) 1.00 cm, (c) 2.00 cm, (d) 3.00 cm, and (e) 4.00 cm.

Questions & Answers

QUESTION:

Problem 32P

A 1.40-kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 734 N/m. The block comes to rest after compressing the spring 4.15 cm. Find the spring potential energy, u, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of (a) 0 cm, (b) 1.00 cm, (c) 2.00 cm, (d) 3.00 cm, and (e) 4.00 cm.

ANSWER:

Step 1 of 5

In this problem we need to find the potential, kinetic and total mechanical energies for various cases.

The mass of the block is: .

The speed is: .

The spring constant is: .

After collision, the spring is compressed by, 4.15 cm which is 0.0415 m.

Add to cart


Study Tools You Might Need

Not The Solution You Need? Search for Your Answer Here:

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back