A Variable-Mass Raindrop. In a rocketpropulsion problem

Chapter 8, Problem 8.103

(choose chapter or problem)

A Variable-Mass Raindrop. In a rocketpropulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is Fext = dp dt = m dv dt + v dm dt Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm>dt = kv. This gives, since Fext = mg, mg = m dv dt + v1kv2 Or, dividing by k, xg = x dv dt + v2 This is a differential equation that has a solution of the form v = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero. (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the raindrop has fallen in t = 3.00 s. (c) Given that k = 2.00 g>m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics, Vol. 49 (1981), pp. 113117.)

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back