Solved: A shaft is drilled from the surface to the center

Chapter 13, Problem 13.75

(choose chapter or problem)

A shaft is drilled from the surface to the center of the earth (see Fig. 13.25). As in Example 13.10 (Section 13.6), make the unrealistic assumption that the density of the earth is uniform. With this approximation, the gravitational force on an object with mass m, that is inside the earth at a distance r from the center, has magnitude \(F_{\mathrm{g}}=G m_{\mathrm{E}} m r / R_{\mathrm{E}}^3\) (as shown in Example 13.10) and points toward the center of the earth. (a) Derive an expression for the gravitational potential energy U(r) of the object–earth system as a function of the object’s distance from the center of the earth. Take the potential energy to be zero when the object is at the center of the earth. (b) If an object is released in the shaft at the earth’s surface, what speed will it have when it reaches the center of the earth?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back