Answer: The magnetic field within a long, straight

Chapter 29, Problem 29.37

(choose chapter or problem)

The magnetic field within a long, straight solenoid with a circular cross section and radius R is increasing at a rate of dB/dt. (a) What is the rate of change of flux through a circle with radius \(r_1\) inside the solenoid, normal to the axis of the solenoid, and with center on the solenoid axis? (b) Find the magnitude of the induced electric field inside the solenoid, at a distance \(r_1\) from its axis. Show the direction of this field in a diagram. (c) What is the magnitude of the induced electric field outside the solenoid, at a distance \(r_2\) from the axis? (d) Graph the magnitude of the induced electric field as a function of the distance r from the axis from r = 0 to r = 2R. (e) What is the magnitude of the induced emf in a circular turn of radius R/2 that has its center on the solenoid axis? (f) What is the magnitude of the induced emf if the radius in part (e) is R? (g) What is the induced emf if the radius in part (e) is 2R?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back