Solved: The hyperfine interaction in a hydrogen atom

Chapter 41, Problem 41.24

(choose chapter or problem)

The hyperfine interaction in a hydrogen atom between the magnetic dipole moment of the proton and the spin magnetic dipole moment of the electron splits the ground level into two levels separated by 5.9 * 10-6 eV. (a) Calculate the wavelength and frequency of the photon emitted when the atom makes a transition between these states, and compare your answer to the value given at the end of Section 41.5. In what part of the electromagnetic spectrum does this lie? Such photons are emitted by cold hydrogen clouds in interstellar space; by detecting these photons, astronomers can learn about the number and density of such clouds. (b) Calculate the effective magnetic field experienced by the electron in these states (see Fig. 41.18). Compare your result to the effective magnetic field due to the spin-orbit coupling calculated in Example 41.7.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back