A war-wolf or trebuchet is a device used during the Middle Ages to throw rocks at castles and now sometimes used to fling large vegetables and pianos as a sport. A simple trebuchet is shown in Figure P10.47. Model it as a stiff rod of negligible mass, 3.00 m long, joining particles of mass m1 5 0.120 kg and m2 5 60.0 kg at its ends. It can turn on a frictionless, horizontal axle perpendicular to the rod and 14.0 cm from the large-mass particle. The operator releases the trebuchet from rest in a horizontal orientation. (a) Find the maximum speed that the small-mass object attains. (b) While the small-mass object is gaining speed, does it move with constant acceleration? (c) Does it move with constant tangential acceleration? (d) Does the trebuchet move with constant angular acceleration? (e) Does it have constant momentum? (f) Does the trebuchetEarth system have constant mechanical energy?
Goals • To relate the speed, frequency, and wavelength of periodic waves • To interpret periodic waves mathematically • To calculate the speed of a wave on a string • To calculate the energy of mechanical waves • To understand the interference of mechanical waves • To analyze standing waves on a string Copyright © 2012 Pearson Education Inc. Characteristics of periodic motion • The amplitude, A, is the maximum magnitude of displacement from equilibrium. • The period, T, is the time for one cycle. • The frequency, f, is the number of cycles per unit time. • The angular frequency, , is 2π times the frequency: = 2πf. • The frequency and period are reciprocals of each other: f = 1/T and T = 1/f. Frequency vs Period What is frequency Frequ