As in sudoku, fill in the missing numbers in the 3-by-3

Chapter 1, Problem 49

(choose chapter or problem)

The sudoku (pronounced: sue-DOE-koo) craze, a number puzzle popular in Japan, hit the United States in 2005. A sudoku (“single number”) puzzle consists of a 9-by-9 grid of 81 boxes subdivided into nine 3-by-3 squares. Some of the square boxes contain numbers. Here is an example:

The objective is to fill in the remaining squares so that every row, every column, and every 3-by-3 square contains each of the digits from 1 through 9 exactly once. (You can work this puzzle in Exercise 66, perhaps consulting one of the dozens of sudoku books in which the numerals 1 through 9 have created a cottage industry for publishers. There’s even a Sudoku for Dummies.)

Trying to slot numbers into small checkerboard grids is not unique to sudoku. In Exercises 47–50, we explore some of the intricate patterns in other arrays of numbers, including magic squares. A magic square is a square array of numbers arranged so that the numbers in all rows, all columns, and the two diagonals have the same sum. Here is an example of a magic square in which the sum of the numbers in each row, each column, and each diagonal is 15:

As in sudoku, fill in the missing numbers in the 3-by-3 square so that it contains each of the digits from 1 through 9 exactly once. Furthermore, in this antimagic square, the rows, the columns, and the two diagonals must have different sums.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back