Approximating Finite Sums with Integrals

In many applications of calculus, integrals are used to approximate finite sums—the reverse of the usual procedure of using finite sums to approximate integrals.

For example, let’s estimate the sum of the square roots of the first n positive integers, The integral

is the limit of the upper sums

Therefore, when n is large, will be close to 2/3 and we will have

The following table shows how good the approximation can be.

Evaluate by showing that the limit is and evaluating the integral.

Step 1 of 4

We have to evaluate

Step 2 of 4</p>

=

We know that is the limit of the upper sum

We have to find the value of the integral