Water is to be pumped from a lake to a ranger station on the side of a mountain (see

Chapter 7, Problem 7.60

(choose chapter or problem)

Water is to be pumped from a lake to a ranger station on the side of a mountain (see figure). The length of pipe immersed in the lake is negligible compared to the length from the lake surface to the discharge point. The flow rate is to be 95 gal/min, and the flow channel is a standard 1-inch. Schedule 40 steel pipe ID 1:049 inch. A pump capable of delivering 8 hp W_ s is available. The friction loss F^ ftlbf/lbm equals 0.041L, where Lft is the length of the pipe. (a) Calculate the maximum elevation, z, of the ranger station above the lake if the pipe rises at an angle of 30. (b) Suppose the pipe inlet is immersed to a significantly greater depth below the surface of the lake, but it discharges at the elevation calculated in Part (a). The pressure at the pipe inlet would be greater than it was at the original immersion depth, which means that P from inlet to outlet would be greater, which in turn suggests that a smaller pump would be sufficient to move the water to the same elevation. In fact, however, a larger pump would be needed. Explain (i) why the pressure at the inlet would be greater than in Part (a), and (ii) why a larger pump would be needed.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back