A stream of air at 500C and 835 torr with a dew point of 30C flowing at a rate of 1515

Chapter 8, Problem 8.38

(choose chapter or problem)

A stream of air at 500C and 835 torr with a dew point of 30C flowing at a rate of 1515 L/s is to be cooled in a spray cooler. A fine mist of liquid water at 15C is sprayed into the hot air at a rate of 110.0 g/s and evaporates completely. The cooled air emerges at 1 atm. (a) Calculate the final temperature of the emerging air stream, assuming that the process is adiabatic. (Suggestion: Derive expressions for the enthalpies of dry air and water at the outlet air temperature, substitute them into the energy balance, and use a spreadsheet to solve the resulting fourth-order polynomial equation.) (b) At what rate (kW) is heat transferred from the hot air feed stream in the spray cooler? What becomes of this heat? (c) In a few sentences, explain how this process works in terms that a high school senior could understand. Incorporate the results of Parts (a) and (b) in your explanation.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back