×
Log in to StudySoup
Get Full Access to Physics: Principles With Applications - 6 Edition - Chapter 4 - Problem 69pp
Join StudySoup for FREE
Get Full Access to Physics: Principles With Applications - 6 Edition - Chapter 4 - Problem 69pp

Already have an account? Login here
×
Reset your password

PP A Simple Solution for a Stuck Car If your car is stuck

Physics: Principles with Applications | 6th Edition | ISBN: 9780130606204 | Authors: Douglas C. Giancoli ISBN: 9780130606204 3

Solution for problem 69PP Chapter 4

Physics: Principles with Applications | 6th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Physics: Principles with Applications | 6th Edition | ISBN: 9780130606204 | Authors: Douglas C. Giancoli

Physics: Principles with Applications | 6th Edition

4 5 1 328 Reviews
30
2
Problem 69PP

PP A Simple Solution for a Stuck Car If your car is stuck in the mud and you don’t have a winch to pull it out, you can use a piece of rope and a tree to do the trick. First, you tie one end of the rope to your car and the other to a tree, then pull as hard as you can on the middle of the rope, as shown in Figure P4.68a. This technique applies a force to the car much larger than the force that you can apply directly. To see why the car experiences such a large force, look at the forces acting on the center point of the rope, as shown in Figure P4.68b. The sum of the forces is zero, thus the tension is much greater than the force you apply. It is this tension force that acts on the car and, with luck, pulls it free. The sum of the three forces acting on the center point of the rope is assumed to be zero because A. This point has a very small mass. B. Tension forces in a rope always cancel. C. This point is not accelerating. D. The angle of deflection is very small.

Step-by-Step Solution:

Step 1 of 3 According to newton's second law The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object. In the above case , more forces acting on the car than the middle of the rope where you going to pull si this is the reason car will not accelerate due to awe are applying small force rather than car force so there is no acceleration

Step 2 of 3

Chapter 4, Problem 69PP is Solved
Step 3 of 3

Textbook: Physics: Principles with Applications
Edition: 6
Author: Douglas C. Giancoli
ISBN: 9780130606204

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

PP A Simple Solution for a Stuck Car If your car is stuck