The frequency of vibrations of a vibrating violin string is given by where is the length

Chapter 3, Problem 28

(choose chapter or problem)

The frequency of vibrations of a vibrating violin string is given by where is the length of the string, is its tension, and is its linear density. [See Chapter 11 in Donald E. Hall, Musical Acoustics, 3d ed. (Pacific Grove, CA: Brooks/Cole, 2002).] (a) Find the rate of change of the frequency with respect to (i) the length (when and are constant), (ii) the tension (when and are constant), and (iii) the linear density (when and are constant). (b) The pitch of a note (how high or low the note sounds) is determined by the frequency . (The higher the frequency, the higher the pitch.) Use the signs of the derivatives in part (a) to determine what happens to the pitch of a note (i) when the effective length of a string is decreased by placing a finger on the string so a shorter portion of the string vibrates, (ii) when the tension is increased by turning a tuning peg, (iii) when the linear density is increased by switching to another string.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back