Consider the Greens function G(x, t; x1, t1) for the two-dimensional wave equation as

Chapter 11, Problem 11.2.12

(choose chapter or problem)

Consider the Greens function G(x, t; x1, t1) for the two-dimensional wave equation as the solution of the following three-dimensional wave equation: 2u t2 = c22u + Q(x, t) u(x, 0) = 0 u t (x, 0) = 0 Q(x, t) = (x x1)(y y1)(t t1). We will solve for the two-dimensional Greens function by this method of descent (descending from three dimensions to two dimensions). *(a) Solve for G(x, t; x1, t1) using the general solution of the three-dimensional wave equation. Here, the source Q(x, t) may be interpreted either as a point source in two dimensions or as a line source in three dimensions. [Hint: dz0 may be evaluated by introducing the three-dimensional distance from the point source, 2 = (x x1) 2 + (y y1) 2 + (z z0) 2.] (b) Show that G is a function only of the elapsed time tt1 and the two-dimensional distance r from the line source, r2 = (x x1) 2 + (y y1) 2. (c) Where is the effect of an impulse felt after a time has elapsed? Compare to the one- and three-dimensional problems. (d) Sketch G for t t1 fixed. (e) Sketch G for r fixed.

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back