use the Gauss-Jordan method to find the inverse of the given matrix (if it exists). Partitioning large square matrices can sometimes make theirinverses easier to compute, particularly if the blocks havea nice form. In Exercises 6468, verify by block multiplicationthat the inverse of a matrix, if partitioned as shown, isas claimed. (Assume that all inverses exist as needed.)

1r'Ccf+rutrls- fr' flx < 'PCQ W'iOiC'>( ( f-\) '-"(ffic-{2r)\ I t'.u-,."1J-.i fl Ctr>,-/""--.F{h' b - ')/' t" V; ,^Jt {Wa"4L -r3c,lcll-.ft4t.'r.f, + .t- tht,r-- PgAL,.,,--+pr"r,.r [)-€-f,,-,.d',1 -t-'{-v-.e,r-'si-cF-Y V 't f ' t!! ; i.:'t\ :'tTYi Q-" w*x)co,-pco\ ,F * d="'**8i!;r-' b ftJ.,RCi (ir*r;{[":.,94-.'o) C'\)'fi' *j,lr,.rixc ' o 40fu qqqO; =& x K F