Describe all skew syr.lmetric scalar m:ltrices.
Trigonometry Notes Chapter 2 Section 1&2 Pythagorean Identities: Sin θ+Cos θ=1 Tan θ+1=Sec θ 2 1+Cot θ=Csc θ 2 Conjugates: 2 2 A+B--------A-B so (a+b)*(a-b)=a -b Verify the Identity: sinθ 1+cosθ = Binomial in the denominator is not good 1−cosθ sinθ sinθ ∗(1+cosθ) 1−cosθ Multiply by conjugate (1+cosθ) sinθ(1+cosθ) 2 (1-cosθ)(1+cosθ)=sin2θ because 1-cosθ=sinθ sin θ 1+cosθ 1+cosθ = Factor out sinθ sinθ sinθ Replace with single term: Tan θ+1=Sec θ 2 Sec θ+1=N/A Verify the Identity: tanθ secθ−1 =cscθ+cotθ Left side tanθ ∗(secθ+1) secθ−1 Multiply by the conjugate (secθ+1) tanθ(secθ+1) 2 (secθ1)(secθ+1)=tan θ tan θ secθ+1 tanθ Factor out tanθ 1 cosθ +1 Express as sin and cos sin cos 1 +1 ∗ cosθ Multiply (cosθ )( sinθ 1 cosθ 1 + cosθ over cosθ cancels leaving sinθ sinθ sinθ cscθ+cotθ=cscθ+cotθ Simplify Verify the identity: 2 tanθ+cotθ= tan