Let Iu I .... Ul ' . UN I ... u") be an orthonormal basis for Euclidean space V. S = span { U I ... Uk ). and T = span { Ul -tl ... u,,}. For any x in S and any y in T. show that (x. y) = o.

F fr /'r ;-' Y-- \ ,1 i,LLCLr,1 \\*'--\L/ i ..) ,r'1 L r;tr-izr--.\-- \:j;J ':- > \'r/ l'/ \ t.",t-rJ. T XAh,J *t: v' /'\ f-x:). Al,\4 \, it .: --j 1rL) c>l \ 'I.'jrr 'd'( t,-2 I,tf L- -!j-l-* .-: -*- "'- :LC(:U\',Jc:(',*-l T f : c,. L1 L.* iiii::."*1 c \C, ct)* t2'-'/*)t""*f\ ,.kl {-:"'.'p i Cpnt, cr p- \,lt*vt 5; '1liri) \LC,c,- r 1'.,s(ag