Determine the matrix in hor.lOgeneous fonn that produced the image of the semicircle depicted in the followmg figure: Original fi gure 4,-,--,--,"-~o,--,-,--, , , 3 --t--t--t-- --+--+--+-- I I I I I I 2 --f--f--r-- ~~ ~~ --,...--,...--r -- I " " I Or--C'---,'---c'--i---,'---c' --,'---i , I I I I I I " I I I - I -~- --~-- --+-- I " " I , I I I I I - 2 --~--~-- -- --~-- --+-- I I I I I I I I I I I , --~--~-- -- --~-- --~-- I " " I - 3 , I I I I I - 4 4 3 2 o 2 3 4 [m~gc 4,-,..--,-,.., --r--;,-,--,---, , , 3 -- -- --~--- --t--+--{-- I " " I 2 --~--~-- --- --~-- --~-- I I I I I I I " I I I --r--~-- --- --r-- --~-- : : r--~ --if_~ ~__i __ L_L_L __ _: _: L_L_ I " " I I I I I I I - I - 2 --~--~-- I I I --- --~-- I I --~-- , , " " I --~--~-- --- --~-- --~-- I " " I - 3 I I I ' " 41 --~3--~2C-~~O-- -CC- 3C- 4
Larissa Shen MAT 106 Trigonometry Week 2 Notes Uses of Trigonometry Trigonometry involves calculations with triangles Studies relationships between lengths, heights and angles of different triangles Created in the 3rd century BC for astronomical studies Now we use it in just about everything spatial and even some things that aren’t Trigonometry can be used to measure the heights of buildings and mountains A non-spatial use of trig is music A computer represents music mathematically by its sound waves (sine, cosine, tangent, etc) In construction, trigonometry is used for: Measuring areas, making walls parallel and perpendicular, and roof slope https://d2cyt36b7wnvt9.cloudfront.net/exams/wp- content/uploads/2015/11/tajj.jpg Architects use trig to calculate structural load, surface slope, sun shading and light angles Flight engineers use trig to figure out where they’re going Physicists use trig is used to find components of vectors, model waves, and more In criminology, trig is used to calculate a projectile’s trajectory Marine biologists often use trigonometry to establish depth Used in oceanography to calculate the height of tides Functions Without Acute Angles Reference angle- Acute angle formed by the terminal side and the x-axis In this picture, beta is the reference angle In Quadrant I, beta is identical to theta