A hypothetical moon orbits a planet which in turn orbits a star. Suppose that the orbits

Chapter 4, Problem 61

(choose chapter or problem)

A hypothetical moon orbits a planet which in turn orbits a star. Suppose that the orbits are circular and that the moon orbits the planet 12 times in the time it takes for the planet to orbit the star once. In this problem we will investigate whether the moon could come to a stop at some instant. (See Figure 4.112.) (a) Suppose the radius of the moons orbit around the planet is 1 unit and the radius of the planets orbit around the star is R units. Explain why the motion of the moon relative to the star can be described by the parametric equations x = R cos t + cos(12t), y = R sin t + sin(12t). (b) Find values for R and t such that the moon stops relative to the star at time t. (c) On a graphing calculator, plot the path of the moon for the value of R you obtained in part (b). Experiment with other values for R

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back