×
Log in to StudySoup
Get Full Access to Chemistry: The Central Science - 12 Edition - Chapter 7 - Problem 95ae
Join StudySoup for FREE
Get Full Access to Chemistry: The Central Science - 12 Edition - Chapter 7 - Problem 95ae

Already have an account? Login here
×
Reset your password

(a) Use orbital diagrams to illustrate what happens when

Chemistry: The Central Science | 12th Edition | ISBN: 9780321696724 | Authors: Theodore E. Brown; H. Eugene LeMay; Bruce E. Bursten; Catherine Murphy; Patrick Woodward ISBN: 9780321696724 27

Solution for problem 95AE Chapter 7

Chemistry: The Central Science | 12th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Chemistry: The Central Science | 12th Edition | ISBN: 9780321696724 | Authors: Theodore E. Brown; H. Eugene LeMay; Bruce E. Bursten; Catherine Murphy; Patrick Woodward

Chemistry: The Central Science | 12th Edition

4 5 1 290 Reviews
27
4
Problem 95AE

(a) Use orbital diagrams to illustrate what happens when an oxygen atom gains two electrons. (b) Why does O3 - not exist?

Step-by-Step Solution:
Step 1 of 3

PHYS Notes Week 7 Feb 22­26 Electric Charge ­ Particles have either a positive or negative charge ­ Combining these particles into atoms/molecules result in three possibilities ­ Negatively charged: object contains more negative particles than positive particles ­ Positively charged: object contains more positive particles than negative particles ­ Electrically neutral: object contains equal amounts of positive and negative particles ­ Nature prefers neutral charges ­ The terms "positive" and "negative" don't mean anything; they just refer to the fact that the charges are opposite ­ Electrostatic/electric force: the force that charged particles exert on each other ­ Objects with the same electrical charge repel each other, while objects with opposite electrical charges attract each other ­ Strong electrical charges can induce an opposite charge in a neutrally charged system ­ Grounding it can neutralize a system’s charge ­ Grounding: touching an object to the ground (the earth is so big that it can absorb any extra charge without problem) ­ Unit of electric charge is a coulomb (C) ­ Derived from base unit of ampere, which is a measure of current ­ Current: rate at which charge moves past a given point in a given amount of time ­ Charge is quantized (comes in basic units based on electrons that cannot be divided) ­ Basic unit of charge: electron ­ Historically led to the development of quantum mechanics ­ Charge is conserved (cannot be created or destroyed, only moved around) ­ Charge moving through materials ­ Conductors vs. insulators ­ Conductors allow electrons to move freely (ex. metal) ­ Everything can be a conductor with enough electricity ­ Insulators don't allow electrons to move as freely ­ Semi­conductors are somewhere in between ­ Superconductors allow charge to move without hindrance ­ Coulomb’s law ­ Force exerted by charged particles on each other depends on the size of the charge of the particles as well as their distance from one another ­ Two positive or two negative charges ­­> particles push away from each other; one negative and one positive charge ­­> particles attract each other * Increasing force means opposite charges (attracting particles) ­ Electric fields: electrostatic forces existing around a charged particle...

Step 2 of 3

Chapter 7, Problem 95AE is Solved
Step 3 of 3

Textbook: Chemistry: The Central Science
Edition: 12
Author: Theodore E. Brown; H. Eugene LeMay; Bruce E. Bursten; Catherine Murphy; Patrick Woodward
ISBN: 9780321696724

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

(a) Use orbital diagrams to illustrate what happens when