In Exercises 1-8, find
(a) \(\mathbf{u} \cdot \mathbf{v}\),
(b) \(\mathbf{u} \cdot \mathbf{u}\),
(c) \(\|\mathbf{u}\|^{2}\),
(d) \((\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\), and
(e) \(\mathbf{u} \cdot(\mathbf{2 v})\).
\(\mathbf{u}=\langle 3,4\rangle, \mathbf{v}=\langle-1,5\rangle\)
Text Transcription:
u dot v
u dot u
||u||^2
(u dot v) v
u dot(2 v)
u=langle 3,4 rangle, v=langle-1,5 rangle
Step 1 of 5) The integrals of cot x and csc x are found in a way similar to those used for finding the integrals of tan x and sec x in Examples 7c and 8b (see Exercises 71 and 72). We summarize the results for these four basic trigonometric integrals here.