Consider the hypothetical reaction A(g) + 2 B(g) = 2 C(g), for which K, = 0.25 at some

Chapter 15, Problem 15.77

(choose chapter or problem)

Consider the hypothetical reaction A(g) + 2 B(g) = 2 C(g), for which K, = 0.25 at some temperature. A 1.00-L reaction vessel is loaded with 1.00 mol of compound C, which is allowed to reach equilibrium. Let the variable x represent the number of mol/L of compound A present at equilibrium. (a) In terms of x, what are the equilibrium concentrations of compounds B and C? (b) What limits must be placed on the value of x so that all concentrations are positive? (c) By putting the equilibrium concentrations (in terms of x) into the equilibriumconstant expression, derive an equation that can be solved for x. (d) The equation from part (c) is a cubic equation (one thathasthe form ax3 + bx2 + ex + d = 0). In general, cubic equations cannot be solved in closed form. However, you can estimate the solution by plotting the cubic equation in the allowed range of x that you specified in part (b). The point at which the cubic equation crosses the x-axis is the solution. (e) From the plot in part (d), estimate the equilibrium concentrations of A, B, and C. (Hi11t: You can check the accuracy of your answer by substituting these concentrations into the equilibrium expression.)

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back