Let V be a complex inner product space. Prove that for all v, w in V, ||v + w||2 = ||v||2 + 2Re(v, w) + ||v||2, where Re denotes the real part of a complex number.

qt /,x LI , t 0 t'c/ar,fu ,,,,t^€) &-xt QLv Q: \ r\ L\j"X -\ t,I \ .J J''l X \,t:a(XJ -2 a{ ts iJ xt -- + x {C,rl N',- 3 ^ ^ t'"(;'&A,'eu3r\ { , a,,J J-{''"{f 6) x' -...