In each of 1-3, verify that x(t), y(t) is a solution of the given system of equations, and find its orbit.

1.SpcuoN 4.3LocanITHMIC FuNcuoNs Definition.A.The losarithofruith, respertlr.e baisdefi,ned, by g:logo* iand,ontya1 X = OX Example L.t.Rewri,tei: ro,s{l,logarithm. loqrrTL Example 1.2.Reuritelogr(r +): 3asan erponent. (ilu= x+t Example L.3.logo7: C qo = I Example 1.4.logoo: I a'-- a 2.LocanrruMs v.s.ExPoNENTS (1)al"s"' X (2)logo': X Example 2.!.Eaaluatelogtrqlffi)a - I (2) q= W* sew_fr Example 2.2,Si.mpt (0.S)t"sg{i+=) t + [ 5#*$tq# Section 4.3 3.Evar,uarrLocARrrHMs Example3.1.Eualuaeaclogarithm. Nthord,ofoperations. fu)a+bg24 4