×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School
Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School

Already have an account? Login here
×
Reset your password

Prove: If is an orthonormal basis for , and if A can be expressed as then A is symmetric

Elementary Linear Algebra: Applications Version | 10th Edition | ISBN: 9780470432051 | Authors: Howard Anton, Chris Rorres ISBN: 9780470432051 396

Solution for problem 20 Chapter 7.2

Elementary Linear Algebra: Applications Version | 10th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Elementary Linear Algebra: Applications Version | 10th Edition | ISBN: 9780470432051 | Authors: Howard Anton, Chris Rorres

Elementary Linear Algebra: Applications Version | 10th Edition

4 5 1 428 Reviews
14
5
Problem 20

Prove: If is an orthonormal basis for , and if A can be expressed as then A is symmetric and has eigenvalues .

Step-by-Step Solution:
Step 1 of 3

Calc III Lec Day 1 8/29/16 Ch. 11.2 Vector : a set of ordered numbers Ex) vector a = (1,2,3) which does not equal (2,3,1) Uses 1. Locate points in space a. Vector a = (a ,1 ,2 )3means that from the origin (0,0,0) vector a terminates at point (a ,a1,a2) 3nd starts at point (0,0,0) 2. Vector Operations aka Algebra of Vectors a. Vector a = (a ,1 ,2 )3vector b = (b ,b 1b 2, 3 + b = (a- 1b ,1 +2 ,a2+b3) 3 b. Any number c times a vector a = (ca ,ca ,c1 ) 2 3 c. a + b = b + a 3. Diagonals of a Parallelogram a. For a parallelogram with adjacent sides formed by vectors a and b i. The long diagonal = a + b ii. The short dia

Step 2 of 3

Chapter 7.2, Problem 20 is Solved
Step 3 of 3

Textbook: Elementary Linear Algebra: Applications Version
Edition: 10
Author: Howard Anton, Chris Rorres
ISBN: 9780470432051

This textbook survival guide was created for the textbook: Elementary Linear Algebra: Applications Version, edition: 10. Elementary Linear Algebra: Applications Version was written by and is associated to the ISBN: 9780470432051. The answer to “Prove: If is an orthonormal basis for , and if A can be expressed as then A is symmetric and has eigenvalues .” is broken down into a number of easy to follow steps, and 23 words. Since the solution to 20 from 7.2 chapter was answered, more than 221 students have viewed the full step-by-step answer. The full step-by-step solution to problem: 20 from chapter: 7.2 was answered by , our top Math solution expert on 03/13/18, 08:29PM. This full solution covers the following key subjects: . This expansive textbook survival guide covers 83 chapters, and 2248 solutions.

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

Prove: If is an orthonormal basis for , and if A can be expressed as then A is symmetric