The torque constant of a motor is the ratio of torque to current and is often given in

Chapter 2, Problem 2.18

(choose chapter or problem)

The torque constant of a motor is the ratio of torque to current and is often given in ounce-inches per ampere. (Ounce-inches have dimension force distance, where an ounce is 1/ 16 of a pound.) The electric constant of a motor is the ratio of back emf to speed and is often given in volts per 1000 rpm. In consistent units, the two constants are the same for a given motor. (a) Show that the units ounce-inches per ampere are proportional to volts per 1000 rpm by reducing both to MKS (SI) units. Figure 2.49 Op-amp biquad Figure 2.50 Simplified model for capacitor microphone (b) A certain motor has a back emf of 25 V at 1000 rpm. What is its torque constant in ounce-inches per ampere? (c) What is the torque constant of the motor of part (b) in newton-meters per ampere?

Unfortunately, we don't have that question answered yet. But you can get it answered in just 5 hours by Logging in or Becoming a subscriber.

Becoming a subscriber
Or look for another answer

×

Login

Login or Sign up for access to all of our study tools and educational content!

Forgot password?
Register Now

×

Register

Sign up for access to all content on our site!

Or login if you already have an account

×

Reset password

If you have an active account we’ll send you an e-mail for password recovery

Or login if you have your password back